15,080 research outputs found

    Interaction Between Supernova Remnant G22.7-0.2 And The Ambient Molecular Clouds

    Get PDF
    We have carried out 12CO (J=1-0 and 2-1), 13CO (J=1-0), and C18O (J=1-0) observations in the direction of the supernova remnant (SNR) G22.7-0.2. A filamentary molecular gas structure, which is likely part of a larger molecular complex with VLSR~75-79 km/s, is detected and is found to surround the southern boundary of the remnant. In particular, the high-velocity wing (77-110 km/s) in the 12CO (J=1-0 and J=2-1) emission shows convincing evidence of the interaction between SNR G22.7-0.2 and the 75-79 km/s molecular clouds (MCs). Spectra with redshifted profiles, a signature of shocked molecular gas, are seen in the southeastern boundary of the remnant. The association between the remnant and the 77 km/s MCs places the remnant at the near distance of 4.0-4.8 kpc, which agrees with a location on the Scutum-Crux arm. We suggest that SNR G22.7-0.2, SNR W41, and HII region G022.760-0.485 are at the same distance and are associated with GMC G23.0-0.4.Comment: 9 pages, 9 figures, 3 tables, accepted for publication in Ap

    From Facial Parts Responses to Face Detection: A Deep Learning Approach

    Full text link
    In this paper, we propose a novel deep convolutional network (DCN) that achieves outstanding performance on FDDB, PASCAL Face, and AFW. Specifically, our method achieves a high recall rate of 90.99% on the challenging FDDB benchmark, outperforming the state-of-the-art method by a large margin of 2.91%. Importantly, we consider finding faces from a new perspective through scoring facial parts responses by their spatial structure and arrangement. The scoring mechanism is carefully formulated considering challenging cases where faces are only partially visible. This consideration allows our network to detect faces under severe occlusion and unconstrained pose variation, which are the main difficulty and bottleneck of most existing face detection approaches. We show that despite the use of DCN, our network can achieve practical runtime speed.Comment: To appear in ICCV 201

    Fast quantum information transfer with superconducting flux qubits coupled to a cavity

    Full text link
    We present a way to realize quantum information transfer with superconducting flux qubits coupled to a cavity. Because only resonant qubit-cavity interaction and resonant qubit-pulse interaction are applied, the information transfer can be performed much faster, when compared with the previous proposals. This proposal does not require adjustment of the qubit level spacings during the operation. Moreover, neither uniformity in the device parameters nor exact placement of qubits in the cavity is needed by this proposal.Comment: 6 pages, 3 figure
    • …
    corecore